الرياضيات

الرياضيات

المسترx الرياضيات
 
الرئيسيةاليوميةس .و .جبحـثالأعضاءالمجموعاتالتسجيلدخول
اهلا وسهلا بكم فى موقع المســـــــــــتر xالرياضيـــــــــــــات
تهنئه خاصه مقدمه من الاستاذ /مصطفى عاطف المصرى لجميع الطالبه والطالبات الصف الاول الاعدادى لتفوقهم الدراسى وهم الطالب /ادهم خالد ابو كريشه والطالبه / ايه خالد عبد الغنى الطاليه /رحمه احمد عوض علام والطالبه /عهد محمد عوض والطالبه /امانى عاطف الرفيعى والطالبه/ ميار محمد الطالبه /رانيا مؤمن بندو( الصف الخامس الابتدائى )) الطالبه /رحمه خالد عبد الغنى(الصف الثالث الابتدائى)
طلاب الصف الاول الثانوى الحاصلين على مراكز متقدمه الطالبه / ياسمين يسرى الطالبه /ايناس مؤمن دفا والطالب/ محمود جمال الانصارىد الطالب / باسل مؤمن بندو الطالبه/ دينا المصرى الطالبه/ منه محمود شلبى
بكل الحب والتقدير اتقدم لطلبه وطالبات الصف القانى الاعدادى باجمل التهانى القلبيه بمناسبه النجاح الطالب /عبد الله عمرو الزيات طلاب ى الطالب/ مروان جمال الانصارى الطالب / احمد محمد عبد الحميد الطالب / عمرو عماد عبد السلام الطالب /عوض الطالبه/ رانيا عاطف محمد الطالبه/ اسماء السعودى جابر الطالبه /ساره محمد عبد الحميد الطالب / محمد فوزى والطالب /احمد خالد والطالب/ محمد عاطف سعد الكتاتنى والطالبه /نرمين احمد المصرى والطالبه /ميار حمدى الباروى وطلاب الثالث الاعدادى الطالب /محمد احمد السيد قناوى الطالب / محمود سعدعبد الراضى الطالبه / ايه السباعى الطالبه / نورهان المصرى الطالب / زينب المصرى الطالبه /شدوى خالد ابو كريشه الطالب /محمد اشرف عوض الطالب /حسن صبرى ولجميع الطلبه والطالبات المتفوفين والى الامام ياشباب مصر /
طلاب الصف الثانى الثانوى الطالب اشرف هشام المصرى/ الطالب مصطفى السكرى الطالب /لطفى محمد ا
نتمنى التوفيق لجميع الطلبه والطالبات

شاطر | 
 

  البعد بين نقطتين

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
أ/مصطفى عاطف المصرى
Admin
avatar

المساهمات : 348
تاريخ التسجيل : 06/08/2009
العمر : 34

مُساهمةموضوع: البعد بين نقطتين    الثلاثاء نوفمبر 16, 2010 1:28 am

البعد بين نقطتين
اذا كان أ ( س 1 ، ص 1 ) ، ب ( س 2 ، ص 2 ) فان البعد بين نقطتين أ ، ب = ا ب = طول ا ب =

2 2
= مربع فرق السينات + مربع فرق الصادات = ( س 2 - س 1) + (ص 2 - ص 1 ) = عدد موجب
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 1) اوجد البعد بين نقطتين ا ( 0 ، 1 ) ، ب ( 3 ، 5 ) الحلــــــــــــــــــــ
2 2 2 2 2 2
أ ب = ( س2- س 1) + (ص 2 - ص 1 ) = ( 3 - 0) + (5 - 1) = 3 + 4
= [9 +16 = [ ۲5 = 5 وحدة طول
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 2) ) اذا كانت ا ( س ، 2 ) ، ب ( 1 ، 10 ) وكان ا ب =10 وحدات طوليه فاحسب قيمة س الحلـ

2 2 بتربيع 2 2
اب = (1- س) + (10 -2 ) = 10 الطرفين ( 1 - س) + 8 = 100

1 – 2 س + س2 + 64 = 100 س 2 - 2 س - 35 = 0 ( س -7 ) ( س +5 ) = 0
س – 7 =0 س =7 ، س + 5 =0 س = -5 س = 7 أو - 5
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 3) ) اذا كانت م ( س ، 1 ) على بعدين متساويين من النقطتين ، ا ( 4 ، 2 ) ، ب ( 3 ، 3 ) احسب
قيمة س الحلـــــــ
2 2 2 2 أ م = ب م = ( س - 4) + (1 - 2 ) = (س - 3) + (1 - 3 )
2 2 2 2
( س - 4) + 1 = (س - 3) + (- 2 ) س2 – 8 س + 16 + 1 = س2 - 6 س + 9 +4
س2 - 8 س – س2 + 6 س = 13 - 17 - 2 س = - 4 س = 2
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 4) بين موضع كل من النقط أ ( 4، 3 ) ، ب( 4، 0 ) ،جـ ( 5 ، -5 ) ، د( 1، -6 )
بالنسبه للدائرة م ( 1 ، -1 ) وطول نصف قطرها 5سم الحلـــــــــــــــــــــــــــــــــــ
أ م = [(:4 :-:1 Smile:+Sad:3 :+:1 Smile: = [6خح1/+/9/ = [5خح۲/ = 5 أ تقع على الدائرة
ب م = [(:4 :-:1 Smile:+Sad:0 :+:1 Smile := = [9خح/+/1/ = [10 أ تقع داخل الدائرة
جـ م = [(:5 :-:1 Smile:+Sad:-5 :+:1 Smile: = [6خح1/+/16/ = [3۲ أ تقع خارج الدائرة
د م = [(:1 :-:1 Smile:+Sad:-1 :+:6 Smile: = [0/+/25/ = [5خح۲/ = 5 أ تقع على الدائرة
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
تدريب ( 1 ) أكمل ماياتى : ـ ( اجـب بنفسك )
1)البعد بين النقطتين ( 3 ، 1 ) ، ( 7 ،4) = 00000 وحدة طول
2) البعد بين النقطتين ( -6 ، 1 ) ، ( 2 ،-5) = 00000 وحدة طول
3) بعد ألنقطه ( -12 ، 9 ) عن نقطه الأصل = 000000 وحدة طول
4) اذا كان أ (0 ، 4) ، ب ( 3 ، 0 ) فان ا ب = 00000 وحدة طول
5 ) المربع ا ب جـ د فيه ا ( 2 ،-3 ) حـ ( -2 ، 0 ) فان مساحته = 0000000 وحدة مربعه
6 ) طول نصف قطر الدائرة التي مركزها ( 5 ، -3 ) وتمر بالنقطة (1 ،0) = 0000000 وحدة طول
ملاحظه (1) لإثبات إن ا ، ب ، جـ على استقامة واحدة
نوجد ا ب ، ب جـ ، جـ ا ويكون البعد الأكبر = مجموع البعدين الآخرين
مثال(5 )اثبت إن النقط الاتيه ا ( 1 ،-1 ) ، ب (-3 ، 3 )، جـ (3 ، -3 ) على استقامة واحد ه الحلــــــــــــــــ
ا ب = ( -3 - 1) 2 + (3- ( - 1 ) ) 2 = ( - 4) 2 + 4 2 = 16 + 16 = 32 = 4 2

ب جـ = (3 - - 3) 2 + (-3 - 3 ) 2 = 6 2 + (- 6 )2 = 36 + 36 = 72 = 6 2

ا جـ = (3 - 1) 2 + (-3 – (-1 ) ) 2 = ( 2) 2 +(- 2 ) 2 = 4 + 4 = 8 = 2 2

ب جـ = ا ب + أ جـ ا ، ب ، جـ على استقامة واحد ه
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
ملاحظه (2) لإثبات إن ا ، ب ، جـ هى رؤؤس مثلث نوجد ا ب ، ب جـ ، جـ ا ويكون
مجموع اى بعدين > البعد الثالث لان مجموع طولي اى ضلعين في مثلث اكبر من طول الضلع الثالث
اولا التعرف على نوع المثلث من حيث الزوايا :
1) حاد الزوايا : مربع الضلع الأكبر < مجموع مربعي طولي الضلعين الآخرين
2) قائم الزاوية : مربع الضلع الأكبر = مجموع مربعي طولي الضلعين الآخرين عكس نظريه فيثاغورث
3) منفرج الزاوية: مربع الضلع الأكبر > مجموع مربعي طولي الضلعين الآخرين
ثانيا التعرف على نوع المثلث من حيث الإضلاع :
1)مختلف الإضلاع ا ب ≠ ب جـ ≠ جـ أ
2) متساوي الساقين نوجد ا ب ، ب جـ ، جـ ا ويكون به ضلعين متساوين
3 ) متساوي الإضلاع ا ب = ب جـ = جـ ا
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال (6) اثبت إن النقط أ(3 ،10 ) ، ب (8 ، 5) ، جـ (5 ،2 )
هي رؤوس مثلث قائم الزاوية ثم اوجد مساحته الحلـــــــــــــــــ
ا ب = (8 -3) 2 + (5- 10 ) 2 = 25 + 25 = 50 = 5 2

ب جـ = (5 - Cool 2 + (2 - 5 ) 2 = 9 + 9 = = 18 = 3 2

ا جـ = (5 - 3) 2 + (2 –10 ) 2 = 4 + 64 = = 68

(ا ب) 2 =50 ، ( ب جـ) 2 = 18 ، ( ا جـ ) 2=68 ( ا جـ )2 = ( ا ب ) 2 + ( ب جـ ) 2 مثلث قائم الزاوية

مساحه Δالقائم الزاوية = نصف حاصل ضرب ضلعي القائمة = 5 و0×ا ب × ب جـ = 15 وحدة مربعه
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال(7 ) اثبت إن المثلث ا ب جـ حيث أ( 1 ،-2 ) ، ب ( -4 ، 2 )، جـ (1 ، 6 ) متساوي الساقين الحلـــــــــ
ا ب = (-4 -1) 2 + (2+2 ) 2 = 25 + 16 = 41

ب جـ = (-4 - 1) 2 + (6 - 2 ) 2 = 25 + 16 = 41

ا جـ = (1 - 1) 2 + (6 +2 ) 2 = 0 + 64 = = 64 = 8

ا ب = ب جـ المثلث ا ب جـ متساوي الساقين
ملاحظه (3) لإثبات إن ا ، ب ، جـ ، د هي رؤوس او ( ا ب جـ د )
1) متوازي الإضلاع : كل ضلعين متقابلين متساويان في الطول ا ب = حـ د ، ب جـ = د أ
2) معين : إضلاعه الأربع متساوية فى الطول ا ب = حـ د = ب جـ = د أ
3) مستطيل:كل ضلعين متقابلين متساويان في الطول وقطراه متساويان ا ب= حـ د ، ب جـ = د أ ، ا جـ = ب د
4)مربع : إضلاعه الأربع متساوية فى الطول وقطراه متساويان ا ب = حـ د = ب جـ = د أ، ا جـ = ب د
ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال ( Cool اثبت إن النقط أ ( -5 ، -2 ) ، ب (-2 ، -6) ، جـ (1 ،- 2 ) ، د( - 2،2 ) هى رؤوس معين
الحلـــــــــــــــــــــــــ
أ ب = [ ( -2+ 5)@ :: + (-6 +2 )@ = [9+16: = [25 = 5
ب جـ = [ ( 1+2)@ :: + (-2 +6 )@ = [9+16: = [ 25= 5

جـ د = [ ( -2+ 1)@ :: + (2 +2 )@ = [9+16: = [25 = 5
د أ = [ ( -2+5)@ :: + (2 +2 )@ = [9+16: = [ 25 = 5

ا ب = حـ د = ب جـ = د أ إضلاعه الأربع متساوية فى الطول ا ب جـ د معين
لإيجاد مساحته نوجد أجـ = 6 ،نوجد ب د = 9
ومساحته = حاصل ضرب القطرين = أ جـ × ب د = 6 × 9 = 27 وحدة مربعة
ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 9) اثبت إن النقط أ (3 ،2 ) ، ب (0 ، 5) ، جـ (-3 ،2 ) ، د ( 0، -1 )
هي رؤوس مربع ثم اوجد مسا حته الحلــــــــــــــــــــــــــــــــــــــــــــــــــــــ

ا ب = (0 -3) 2 + (5- 2 ) 2 = 9 + 9 = 18 = 3 2

ب جـ = (-3 - 0) 2 + (2 - 5 ) 2 = 9 + 9 = = 18 = 3 2

جـ د = (0 + 3) 2 + (-1 –2 ) 2 = 9 + 9 = = 18 = 3 2

أ د = (0 - 3) 2 + (-1 –2 ) 2 = 9 + 9 = = 18 = 3 2

أ جـ = (-3 - 3) 2 + (2 - 2 ) 2 = 36 + 0 = = 36 = 6

ب دـ = (0 - 0) 2 + (-1 –5 ) 2 = 0 + 36 = = 36 = 6

ا ب = حـ د = ب جـ = د أ اضلاعه الاربع متساويه فى الطول ، ا جـ = ب د وقطراه متساويان
ا ب جـ د مربع

مساحه المربع = طول الضلع × نفسه = ا ب × ا ب = 3 2 × 3 2 = 18 وحدة مربعه ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
إلى كل محبي الرياضيات
أقد لكم الدرس الأول فى الهندسة التحليلية للصف الثالث الاعدادى
مكتوب بالورد حتى تستطيع إن تأخذ منه ما يتناسب معك
وأتمنى ان يكون وهذا العمل خالص لوجه الله تعالى
سيد ابو عطيه محب لتراب مص

تمارين على البعد بين نقطتين
س1 ا كمل الجدول الاتى : -
م نقطة أ نقطة ب أ ب
1 (س1 ،ص 1) (س2 ، ص 2 ) 00000000000
2 ( 1 ، 3) ( 5 ، 6) 0000000
3 ( 6 ، 0) ( 0 ، Cool 000000
4 ( 2 ، 3 ) ( - ، -1) 0000000
5 ( 3 ، 5) ( 0 ، 1) 000000
6 ( 4 ، -3) ( 0 ، 0) 000000
7 ( - 1 ، -6) ( 4 ، 6 ) 000000
8 ( 1 ، 0 ) ( 0 ، 1 ) 000000














س 2 أكمل ماياتى : -
1)البعد بين النقطتين ( 2 ، 1 ) ، ( 9 ،2) = 00000 وحدة طول
2 ) ألنقطه أ ( 4 ، -3) تبعد عن نقطة الأصل و مسافة قد رها 000 وحدة طول
3) اذا كانت ا ( 2 ، 5) ب ، ( -1 ، 1 ) فان ا ب = 000000000 وحدة طول
4) طول ألقطعه المستقيمة الواصلة بين النقطتين ( -2 ، 3) ، ( 2، 0) = 00000 وحدة طول
5) طول نصف قطر الدائرة المارة بالنقطة ( - 4 ، 3 ) ومركزها نقطه الأصل= 00000 وحدة طول
6) النقطه 0000 [ (1،1) ، ( 1،2) ، (0،2) ، ( 3،-1)] التى تبعد عن نقطة الأصل 2 وحدة طول

س 3 اذا كانت ا ( س ، 3 ) ، ب ( 2 ، - 1 ) وكان ا ب =5 وحدات طوليه فاحسب قيمة س
س4 اذا كان البعد بين النقطتين ( 4 ، ك ) ، ( 6 ، 1 ) يساوى 2 [ 5 وحدات طوليه فاحسب قيمة ك

س5 اثبت إن النقط الاتيه ا ( 1 ،4 ) ، ب ( 3 ، -2 )، جـ (-3 ، 16) على استقامة واحد ه

س6اثبت إن النقط ا ( -3 ، 2 ) ، ب ( 0 ، 5 ) ، حـ ( 3 ، 2 ) تنتمي إلى الدائرة التي مركزها م ( 0 ، 2 )

س7 اثبت إن المثلث ا ب جـ حيث ا ( 3 ،-2 ) ، ب ( 2 ، 5 )، جـ (-4 ، -3 ) متساوي الساقين واحسب مساحته

س 8 اثبت إن النقط أ (3 ،-2 ) ، ب ( - 1 ، 2) ، جـ ( 6 ، 1 ) هي رؤوس مثلث قائم الزاوية واحسب مساحته

س 9 اذا كانت أ ( 0 ،1 ) ، ب (4 ، 5) ، جـ (1 ،8 ) ، د ( -3،4 ) اثبت ا ن ا ب جـ د مستطيل

س 10 اثبت إن النقط أ (3 ، 3 ) ، ب (5 ، 9) ، جـ (-1 ،7 ) ، د ( - 3،1) هي رؤوس معين

س 11 اثبت إن النقط أ (3 ،3 ) ، ب (0 ، 3) ، جـ (0،0 ) ، د ( 3، 0 ) هي رؤوس مربع

س 12 في مستوى احداثى متعامد مثل النقاط ا ( -3 ،-2) ، ب (5، 2) ، جـ ( 3، 6)، د (- 1، 4)
ارسم ا ب جـ د ثم تحقق انه شبه منحرف

اذا كان أ ( س 1 ، ص 1 ) ، ب ( س 2 ، ص 2 ) فان البعد بين نقطتين أ ، ب = ا ب = طول ا ب =

2 2
= مربع فرق السينات + مربع فرق الصادات = ( س 2 - س 1) + (ص 2 - ص 1 ) = عدد موجب
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 1) اوجد البعد بين نقطتين ا ( 0 ، 1 ) ، ب ( 3 ، 5 ) الحلــــــــــــــــــــ
2 2 2 2 2 2
أ ب = ( س2- س 1) + (ص 2 - ص 1 ) = ( 3 - 0) + (5 - 1) = 3 + 4
= [9 +16 = [ ۲5 = 5 وحدة طول
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 2) ) اذا كانت ا ( س ، 2 ) ، ب ( 1 ، 10 ) وكان ا ب =10 وحدات طوليه فاحسب قيمة س الحلـ

2 2 بتربيع 2 2
اب = (1- س) + (10 -2 ) = 10 الطرفين ( 1 - س) + 8 = 100

1 – 2 س + س2 + 64 = 100 س 2 - 2 س - 35 = 0 ( س -7 ) ( س +5 ) = 0
س – 7 =0 س =7 ، س + 5 =0 س = -5 س = 7 أو - 5
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 3) ) اذا كانت م ( س ، 1 ) على بعدين متساويين من النقطتين ، ا ( 4 ، 2 ) ، ب ( 3 ، 3 ) احسب
قيمة س الحلـــــــ
2 2 2 2 أ م = ب م = ( س - 4) + (1 - 2 ) = (س - 3) + (1 - 3 )
2 2 2 2
( س - 4) + 1 = (س - 3) + (- 2 ) س2 – 8 س + 16 + 1 = س2 - 6 س + 9 +4
س2 - 8 س – س2 + 6 س = 13 - 17 - 2 س = - 4 س = 2
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 4) بين موضع كل من النقط أ ( 4، 3 ) ، ب( 4، 0 ) ،جـ ( 5 ، -5 ) ، د( 1، -6 )
بالنسبه للدائرة م ( 1 ، -1 ) وطول نصف قطرها 5سم الحلـــــــــــــــــــــــــــــــــــ
أ م = [(:4 :-:1 Smile:+Sad:3 :+:1 Smile: = [6خح1/+/9/ = [5خح۲/ = 5 أ تقع على الدائرة
ب م = [(:4 :-:1 Smile:+Sad:0 :+:1 Smile := = [9خح/+/1/ = [10 أ تقع داخل الدائرة
جـ م = [(:5 :-:1 Smile:+Sad:-5 :+:1 Smile: = [6خح1/+/16/ = [3۲ أ تقع خارج الدائرة
د م = [(:1 :-:1 Smile:+Sad:-1 :+:6 Smile: = [0/+/25/ = [5خح۲/ = 5 أ تقع على الدائرة
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
تدريب ( 1 ) أكمل ماياتى : ـ ( اجـب بنفسك )
1)البعد بين النقطتين ( 3 ، 1 ) ، ( 7 ،4) = 00000 وحدة طول
2) البعد بين النقطتين ( -6 ، 1 ) ، ( 2 ،-5) = 00000 وحدة طول
3) بعد ألنقطه ( -12 ، 9 ) عن نقطه الأصل = 000000 وحدة طول
4) اذا كان أ (0 ، 4) ، ب ( 3 ، 0 ) فان ا ب = 00000 وحدة طول
5 ) المربع ا ب جـ د فيه ا ( 2 ،-3 ) حـ ( -2 ، 0 ) فان مساحته = 0000000 وحدة مربعه
6 ) طول نصف قطر الدائرة التي مركزها ( 5 ، -3 ) وتمر بالنقطة (1 ،0) = 0000000 وحدة طول
ملاحظه (1) لإثبات إن ا ، ب ، جـ على استقامة واحدة
نوجد ا ب ، ب جـ ، جـ ا ويكون البعد الأكبر = مجموع البعدين الآخرين
مثال(5 )اثبت إن النقط الاتيه ا ( 1 ،-1 ) ، ب (-3 ، 3 )، جـ (3 ، -3 ) على استقامة واحد ه الحلــــــــــــــــ
ا ب = ( -3 - 1) 2 + (3- ( - 1 ) ) 2 = ( - 4) 2 + 4 2 = 16 + 16 = 32 = 4 2

ب جـ = (3 - - 3) 2 + (-3 - 3 ) 2 = 6 2 + (- 6 )2 = 36 + 36 = 72 = 6 2

ا جـ = (3 - 1) 2 + (-3 – (-1 ) ) 2 = ( 2) 2 +(- 2 ) 2 = 4 + 4 = 8 = 2 2

ب جـ = ا ب + أ جـ ا ، ب ، جـ على استقامة واحد ه
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
ملاحظه (2) لإثبات إن ا ، ب ، جـ هى رؤؤس مثلث نوجد ا ب ، ب جـ ، جـ ا ويكون
مجموع اى بعدين > البعد الثالث لان مجموع طولي اى ضلعين في مثلث اكبر من طول الضلع الثالث
اولا التعرف على نوع المثلث من حيث الزوايا :
1) حاد الزوايا : مربع الضلع الأكبر < مجموع مربعي طولي الضلعين الآخرين
2) قائم الزاوية : مربع الضلع الأكبر = مجموع مربعي طولي الضلعين الآخرين عكس نظريه فيثاغورث
3) منفرج الزاوية: مربع الضلع الأكبر > مجموع مربعي طولي الضلعين الآخرين
ثانيا التعرف على نوع المثلث من حيث الإضلاع :
1)مختلف الإضلاع ا ب ≠ ب جـ ≠ جـ أ
2) متساوي الساقين نوجد ا ب ، ب جـ ، جـ ا ويكون به ضلعين متساوين
3 ) متساوي الإضلاع ا ب = ب جـ = جـ ا
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال (6) اثبت إن النقط أ(3 ،10 ) ، ب (8 ، 5) ، جـ (5 ،2 )
هي رؤوس مثلث قائم الزاوية ثم اوجد مساحته الحلـــــــــــــــــ
ا ب = (8 -3) 2 + (5- 10 ) 2 = 25 + 25 = 50 = 5 2

ب جـ = (5 - Cool 2 + (2 - 5 ) 2 = 9 + 9 = = 18 = 3 2

ا جـ = (5 - 3) 2 + (2 –10 ) 2 = 4 + 64 = = 68

(ا ب) 2 =50 ، ( ب جـ) 2 = 18 ، ( ا جـ ) 2=68 ( ا جـ )2 = ( ا ب ) 2 + ( ب جـ ) 2 مثلث قائم الزاوية

مساحه Δالقائم الزاوية = نصف حاصل ضرب ضلعي القائمة = 5 و0×ا ب × ب جـ = 15 وحدة مربعه
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال(7 ) اثبت إن المثلث ا ب جـ حيث أ( 1 ،-2 ) ، ب ( -4 ، 2 )، جـ (1 ، 6 ) متساوي الساقين الحلـــــــــ
ا ب = (-4 -1) 2 + (2+2 ) 2 = 25 + 16 = 41

ب جـ = (-4 - 1) 2 + (6 - 2 ) 2 = 25 + 16 = 41

ا جـ = (1 - 1) 2 + (6 +2 ) 2 = 0 + 64 = = 64 = 8

ا ب = ب جـ المثلث ا ب جـ متساوي الساقين
ملاحظه (3) لإثبات إن ا ، ب ، جـ ، د هي رؤوس او ( ا ب جـ د )
1) متوازي الإضلاع : كل ضلعين متقابلين متساويان في الطول ا ب = حـ د ، ب جـ = د أ
2) معين : إضلاعه الأربع متساوية فى الطول ا ب = حـ د = ب جـ = د أ
3) مستطيل:كل ضلعين متقابلين متساويان في الطول وقطراه متساويان ا ب= حـ د ، ب جـ = د أ ، ا جـ = ب د
4)مربع : إضلاعه الأربع متساوية فى الطول وقطراه متساويان ا ب = حـ د = ب جـ = د أ، ا جـ = ب د
ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال ( Cool اثبت إن النقط أ ( -5 ، -2 ) ، ب (-2 ، -6) ، جـ (1 ،- 2 ) ، د( - 2،2 ) هى رؤوس معين
الحلـــــــــــــــــــــــــ
أ ب = [ ( -2+ 5)@ :: + (-6 +2 )@ = [9+16: = [25 = 5
ب جـ = [ ( 1+2)@ :: + (-2 +6 )@ = [9+16: = [ 25= 5

جـ د = [ ( -2+ 1)@ :: + (2 +2 )@ = [9+16: = [25 = 5
د أ = [ ( -2+5)@ :: + (2 +2 )@ = [9+16: = [ 25 = 5

ا ب = حـ د = ب جـ = د أ إضلاعه الأربع متساوية فى الطول ا ب جـ د معين
لإيجاد مساحته نوجد أجـ = 6 ،نوجد ب د = 9
ومساحته = حاصل ضرب القطرين = أ جـ × ب د = 6 × 9 = 27 وحدة مربعة
ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 9) اثبت إن النقط أ (3 ،2 ) ، ب (0 ، 5) ، جـ (-3 ،2 ) ، د ( 0، -1 )
هي رؤوس مربع ثم اوجد مسا حته الحلــــــــــــــــــــــــــــــــــــــــــــــــــــــ

ا ب = (0 -3) 2 + (5- 2 ) 2 = 9 + 9 = 18 = 3 2

ب جـ = (-3 - 0) 2 + (2 - 5 ) 2 = 9 + 9 = = 18 = 3 2

جـ د = (0 + 3) 2 + (-1 –2 ) 2 = 9 + 9 = = 18 = 3 2

أ د = (0 - 3) 2 + (-1 –2 ) 2 = 9 + 9 = = 18 = 3 2

أ جـ = (-3 - 3) 2 + (2 - 2 ) 2 = 36 + 0 = = 36 = 6

ب دـ = (0 - 0) 2 + (-1 –5 ) 2 = 0 + 36 = = 36 = 6

ا ب = حـ د = ب جـ = د أ اضلاعه الاربع متساويه فى الطول ، ا جـ = ب د وقطراه متساويان
ا ب جـ د مربع

مساحه المربع = طول الضلع × نفسه = ا ب × ا ب = 3 2 × 3 2 = 18 وحدة مربعه ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
إلى كل محبي الرياضيات
أقد لكم الدرس الأول فى الهندسة التحليلية للصف الثالث الاعدادى
مكتوب بالورد حتى تستطيع إن تأخذ منه ما يتناسب معك
وأتمنى ان يكون وهذا العمل خالص لوجه الله تعالى
سيد ابو عطيه محب لتراب مص

تمارين على البعد بين نقطتين
س1 ا كمل الجدول الاتى : -
م نقطة أ نقطة ب أ ب
1 (س1 ،ص 1) (س2 ، ص 2 ) 00000000000
2 ( 1 ، 3) ( 5 ، 6) 0000000
3 ( 6 ، 0) ( 0 ، Cool 000000
4 ( 2 ، 3 ) ( - ، -1) 0000000
5 ( 3 ، 5) ( 0 ، 1) 000000
6 ( 4 ، -3) ( 0 ، 0) 000000
7 ( - 1 ، -6) ( 4 ، 6 ) 000000
8 ( 1 ، 0 ) ( 0 ، 1 ) 000000














س 2 أكمل ماياتى : -
1)البعد بين النقطتين ( 2 ، 1 ) ، ( 9 ،2) = 00000 وحدة طول
2 ) ألنقطه أ ( 4 ، -3) تبعد عن نقطة الأصل و مسافة قد رها 000 وحدة طول
3) اذا كانت ا ( 2 ، 5) ب ، ( -1 ، 1 ) فان ا ب = 000000000 وحدة طول
4) طول ألقطعه المستقيمة الواصلة بين النقطتين ( -2 ، 3) ، ( 2، 0) = 00000 وحدة طول
5) طول نصف قطر الدائرة المارة بالنقطة ( - 4 ، 3 ) ومركزها نقطه الأصل= 00000 وحدة طول
6) النقطه 0000 [ (1،1) ، ( 1،2) ، (0،2) ، ( 3،-1)] التى تبعد عن نقطة الأصل 2 وحدة طول

س 3 اذا كانت ا ( س ، 3 ) ، ب ( 2 ، - 1 ) وكان ا ب =5 وحدات طوليه فاحسب قيمة س
س4 اذا كان البعد بين النقطتين ( 4 ، ك ) ، ( 6 ، 1 ) يساوى 2 [ 5 وحدات طوليه فاحسب قيمة ك

س5 اثبت إن النقط الاتيه ا ( 1 ،4 ) ، ب ( 3 ، -2 )، جـ (-3 ، 16) على استقامة واحد ه

س6اثبت إن النقط ا ( -3 ، 2 ) ، ب ( 0 ، 5 ) ، حـ ( 3 ، 2 ) تنتمي إلى الدائرة التي مركزها م ( 0 ، 2 )

س7 اثبت إن المثلث ا ب جـ حيث ا ( 3 ،-2 ) ، ب ( 2 ، 5 )، جـ (-4 ، -3 ) متساوي الساقين واحسب مساحته

س 8 اثبت إن النقط أ (3 ،-2 ) ، ب ( - 1 ، 2) ، جـ ( 6 ، 1 ) هي رؤوس مثلث قائم الزاوية واحسب مساحته

س 9 اذا كانت أ ( 0 ،1 ) ، ب (4 ، 5) ، جـ (1 ،8 ) ، د ( -3،4 ) اثبت ا ن ا ب جـ د مستطيل

س 10 اثبت إن النقط أ (3 ، 3 ) ، ب (5 ، 9) ، جـ (-1 ،7 ) ، د ( - 3،1) هي رؤوس معين

س 11 اثبت إن النقط أ (3 ،3 ) ، ب (0 ، 3) ، جـ (0،0 ) ، د ( 3، 0 ) هي رؤوس مربع

س 12 في مستوى احداثى متعامد مثل النقاط ا ( -3 ،-2) ، ب (5، 2) ، جـ ( 3، 6)، د (- 1، 4)
ارسم ا ب جـ د ثم تحقق انه شبه منحرف
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://mostafa-math.yoo7.com
 
البعد بين نقطتين
استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
الرياضيات  :: الصف الثالث الاعدادى-
انتقل الى: